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We investigate the transition from integrable to chaotic dynamics in the quantum mechanical wave functions
from the point of view of the nodal structure by employing a two-dimensional quartic oscillator. We find that
the number of nodal domains is drastically reduced as the dynamics of the system changes from integrable to
nonintegrable, and then gradually increases as the system becomes chaotic. The number of nodal intersections
with the classical boundary as a function of the level number shows a characteristic dependence on the
dynamics of the system, too. We also calculate the area distribution of nodal domains and study the emergence
of the power law behavior with the Fisher exponent in the chaotic limit.
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I. INTRODUCTION

Quantum signatures of classically chaotic systems have
been intensively studied and are now known to have some
universal features in the energy level statistics. Similar inves-
tigations on the signatures in the wave functions which may
distinguish chaotic systems from integrable ones have also
been performed �1,2�. A related signature of chaotic systems
is given by the amplitude distribution of wave functions
which empirically reproduces the results of random matrix
theory �3�.

Recently, it was suggested in Ref. �4� that there is in fact
such a universal character in the statistics of nodal domains
of wave functions. The authors of Ref. �4� calculated the
number of nodal domains Ni of the ith wave function, i.e.,
the regions where the wave function has a definite sign with-
out crossing zeros, for two-dimensional billiards. They
showed that the distribution of normalized number Ni / i of
nodal domains for separable systems has a universal feature
characterized by a square root singularity, while that for cha-
otic billiards shows a completely different behavior, suggest-
ing a scaling law Ni� i for large i. The latter scaling law has
been derived in Ref. �5�, where the authors adopted a perco-
lationlike model to count the number of nodal domains. The
authors of Ref. �5� analytically derived the scaling law for
the average number of nodal domains and showed that it
agrees well with the numerical results for the superposition
of random waves, i.e., a model which is supposed to simulate
the wave functions for chaotic billiards �1�. The percolation-
like model allowed them to predict a power law behavior for
the distribution of nodal domain areas, and also the fractal
dimension of nodal domains. These predictions were shown
to agree well with the numerical results for the superposition
of random waves, although one may not conclude from these
results alone that the area distribution provides a clear signa-
ture of quantum chaoticity. The number of nodal domains
was studied also experimentally for the chaotic microwave
billiard �6�.

In the above studies of nodal domains, the two extremes
of dynamical systems, completely integrable �separable� and
chaotic �or its alternative�, have been considered. It is the
purpose of the present paper to extend these studies to a

more general nonintegrable system, where, by controlling a
parameter in the Hamiltonian, one can interpolate the two
extremes. We expect this would show the transition from
integrable to chaotic systems for the nodal domain distribu-
tion and thus may provide a clue to the role of nonintegrable
perturbation which was implicit in the percolationlike model.
We expect that a study of the power law behavior of nodal
domain areas would also give a suggestion on the validity of
the assumption adopted in the model.

Below we first describe the model and the numerical pro-
cedure. We present numerical results for the distribution of
nodal domain numbers in Sec. III together with some ana-
lytical considerations. The distribution of the nodal intersec-
tions with the boundary of the classically allowed region is
presented in Sec. IV. Results for the distribution of nodal
domain areas are given in Sec. V. Proofs of formulas and
some details of the calculations in the text are given in the
Appendixes.

II. MODEL AND NUMERICAL PROCEDURE

As a model which incorporates integrable as well as al-
most chaotic systems, we adopt a two-dimensional quartic
oscillator,

H =
1

2
�px

2 + �py
2� + V�x,y� ,

V�x,y� =
1

2
�x4 + y4� − kx2y2, �1�

where the parameter k controls the dynamics of the system.
Detailed studies performed at �=1 shows that the classical
dynamics of the system at k=0.0 is integrable, becomes ir-
regular as the value of k increases, and reaches an almost
chaotic system at k=0.6 �7�. The energy level statistics of the
quantum mechanical system show a similar transition, e.g.,
from Poisson to Wigner level spacing distribution as k in-
creases �8�. The parameter � is introduced to break the sym-
metry with respect to the exchange of the x and y coordi-
nates, which otherwise leads to an ambiguity in the definition
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of the eigenfunction at k=0.0. The value of � is set to the
value 1.01 throughout. We plot in Fig. 1 the Poincaré surface
of section for the system with �=1.01 at several values of k.
Qualitative behavior is almost the same as that with �=1.

In the numerical calculation, we first diagonalize the
Hamiltonian in a large harmonic oscillator �HO� basis and
obtain wave functions for eigenstates. To determine nodal
domains we cut the two-dimensional sheet into small squares
�meshes� so that they cover the allowed region of classical
motion for each eigenvalue. We then study the sign of the
wave function at each center of a mesh, and calculate the
number of nodal domains by means of the Hoshen-
Kopelman algorithm �9�. Here, two nearest neighbor meshes
with the same sign are considered to belong to the same
nodal domain. The size of the mesh is then changed to a
smaller value until the convergence of the number of nodal
domains is obtained. The adopted value of the mesh size is
xcl�Ei� /max�1.4i , 200� for the ith eigenstate with energy Ei,
where xcl�E� represents the largest value of the x coordinate
for a classical motion with energy E. One should note that
the method becomes inaccurate for very small values of k,
where the nodal crossing changes to a small avoided crossing
due to the nonseparable perturbation. The smallest positive
value of k in the present paper is 0.06 which was used in Sec.
III C to study the qualitative behavior of the number of nodal
domains by comparing with a perturbative argument.

Contrary to the case of the billiards, the size of the
meshed sheet in the present case is not a priori determined.
In fact, since there is no hard wall, wave functions extend to
infinity. They are, however, rapidly attenuated beyond the
classically allowed region for a given energy. Moreover, as
shown in Appendix A, there appears no new nodal domain in
the classically forbidden region. Therefore we adopted the
meshed sheet whose boundary coincides with that of the

classically allowed region. All nodal domains, then, have an
overlap with the meshed sheet. In the case that the boundary
of the meshed sheet cuts a nodal domain into several pieces
the number of nodal domains may be overestimated due to
the choice of the meshed sheet. To estimate the error caused
by this boundary effect, we evaluated the difference between
the number of nodal domains in the adopted meshed sheet
and that in the square sheet that circumscribes the classically
allowed region. The estimated difference was 3.1% for k
=0.1 and 2.2% for k=0.6.

The Hamiltonian is still symmetric with respect to the x
axis and the y axis �7�. We calculated only those wave func-
tions which are symmetric with respect to these two axes.
The diagonalization space was truncated at nx+ny �200,
where nx and ny denote the numbers of oscillator quanta in
the x and y directions. The adopted oscillator frequency in
the diagonalization was optimized so as to minimize the
value of Tr H in this space for each k value �10�.

When k=0.0, we can obtain more accurate numerical re-
sults by adopting the product of the wave functions for a
one-dimensional quartic oscillator calculated in a similar di-
agonalization procedure. Comparison of the number of nodal
domains obtained in the two methods may provide a rough
estimate for the accuracy of the adopted diagonalization pro-
cedure, which in the present case is less than 2.4%. For the
k=0.0 results presented below we adopt those obtained by
the product wave functions.

III. DISTRIBUTION OF THE NUMBER OF NODAL
DOMAINS

A. General consideration on the number
of nodal domains

Before discussing the nodal structure for the present
model, it is useful to study general properties of the number
of nodal domains which provide a useful classification
scheme to be used in later sections.

The number of nodal domains N for a given nodal line
structure of a wave function in a two-dimensional area with a
boundary B is given by the formula

N�nb,nc,m� =
1

2
nb + nc + m + 1, �2�

under the assumption that more than two nodal lines never
cross at the same crossing point. In Eq. �2�, nb represents the
number of intersections of nodal lines with the boundary B,
nc the number of crossing points of nodal lines, and m the
number of islands. Here, the term “island” means a cluster of
mutually connected nodal lines which is linked neither to B
nor to other clusters. A similar formula to Eq. �2� has been
used and proved in Ref. �11� in a slightly different setting of
the problem to study the multiplicity of eigenvalues for a
membrane. In Appendix B we give a proof of the relation �2�
for completeness.

We discuss two cases in which this formula is especially
useful. The first is the m=0 case, i.e., the case where all
nodal lines are linked to the boundary, which is typical for a
separable �and therefore integrable� system. In this case

FIG. 1. Poincaré surface of section for the system of the Hamil-
tonian Eq. �1� with �=1.01 at E=5.0, x=0.0, and �a� k=0.0, �b� 0.2,
�c� 0.4, �d� 0.6. The abscissa axis represents the y coordinate and
the ordinate py.
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N =
1

2
nb + nc + 1 �separable, generic�. �3�

This allows us to discuss the dependence of N on the level
number in relation to the structure of the wave function for
k=0.0 as shown below.

The second case is nc=0 which corresponds to the generic
wave function of nonintegrable systems, where almost all
crossings of nodal lines change to avoided crossings except
for an accidental case. We may first rewrite the number of
nodal domains in Eq. �2� as the sum of two terms:

N = Nin + Nb, �4�

where Nin denotes the number of “inner nodal domains,” i.e.,
those which do not touch the boundary B, while Nb denotes
the remaining part, i.e., the number of “boundary nodal do-
mains” which touch the boundary B. If there is no crossing,
nc=0, it is easy to see that Nin is equal to the number m of
islands. From Eq. �2�, then, we find for nc=0

Nin = m, Nb =
1

2
nb + 1 �nonintegrable, generic�. �5�

The generic relation Eq. �5� for the number of boundary
nodal domains may provide an estimate on the number of
false crossing of nodal lines due to the finite mesh size in the
numerical calculation. Comparison of the value of Nb with
the one obtained from the value of nb gives a difference of
5.2% for k=0.1 and 2.5% for k=0.6.

B. Numerical results for the distribution of the number of
nodal domains

Figure 2 shows the distribution of the number of nodal
domains Ni where the subscript i stands for the level number
ordered according to the eigenvalue. Note that the quoted
level number i is not the one of the total system, since we
consider only levels which are symmetric with respect to the
x axis and the y axis. In the present model, there are four
symmetry classes, and the eigenvalues in the four classes are
almost equally distributed. In the space nx+ny �200 the total
number of levels is 20 301 and that in the adopted symmetry
class is 5151. Thus we may assign for each i the corrected
level number i� approximately given by i�=ci with c
=20 301/5151. The solid lines in Fig. 2 represent the predic-
tion according to the percolationlike model which is given by
the following function:

f�i� =
3�3 − 5

2
�i�, �6�

where the value of the coefficient � is taken as 2/� as cal-
culated for the billiard model �5�. In the percolationlike
model, one first considers a nodal structure of the rectangular
lattice pattern, and then assumes that an avoided crossing of
nodal lines occur at every lattice point randomly, i.e., either
of the positive or negative domains is connected at the point
with probability 1/2 independent of the other lattice points.
Figure 3 shows a nodal domain distribution represented as a
histogram vs Ni / i�. We give in Table I the average and the
standard deviation of Ni / i�.

We first discuss the k=0.0 case where the system is sepa-
rable. In this case the eigenfunction is given by �mn�x ,y�
=�m�x��n�y�, where �m�x� represents the mth wave function
of a one-dimensional quartic oscillator in the x direction. The
behavior of the histogram in Fig. 3�a� is similar to the one for
the integrable system given in Ref. �4�, showing an increase
and a sharp cutoff at some value of Ni / i�. By inspecting Fig.
2�a� we find that this behavior comes from a number of regu-
lar sequences of eigenstates. The sequence with the largest Ni
values is proportional to i, and the corresponding wave func-
tions have the form �nn�x ,y�. This may be contrasted to the
sequence with the smallest Ni values which is proportional to
�i as shown by the dashed line in Fig. 2�a�. The wave func-
tions in this sequence are of the form �n1�x ,y� or �1n�x ,y�.
The slopes of other sequences are intermediate between
them. Typical nodal structures corresponding to �nn�x ,y�
and �n1�x ,y� are shown in Fig. 4.

These behaviors may be understood from Eq. �3�. For
eigenfunctions of the form �n1�x ,y� there is no crossing,
nc

�i�=0, thus Ni�nb
�i� /2. �Below we explicitly write the i de-

pendence of nb.� Since nb
�i� is proportional to �i �4�, the num-

ber of nodal domains Ni in the lowest sequence is also pro-
portional to �i. The dashed line in Fig. 2 shows the function

f̃�i� = d�i�, d =
2�1/4

�3�� 3
4�

� 1.25, �7�

which represents the number of nodal domains for wave
functions �n1�x ,y� evaluated in a semiclassical way as given
in Appendix C 1. On the other hand, for eigenfunctions of
the type �nn�x ,y�, the number of crossing is given by nc

�i�

= �nb
�i��2 /4, and Ni is dominated by nc

�i� if nb
�i� is large enough.

Accordingly, Ni in the highest sequence is proportional to i.
Note that when the level number i becomes larger, in almost
all levels the contribution of nc becomes dominant, and the
number of nodal domains Ni becomes proportional to i on
average.

When the value of k becomes nonzero, e.g., k=0.1 in Fig.
2�b�, the number of nodal domains is drastically reduced.
This is due to the transition from the crossing to the avoided
crossing of nodal lines. The shape of the histogram in Fig.
3�b� changes, too: The peak at the highest value of Ni / i� at
k=0.0 disappears and the histogram is now largely shifted
towards low values of Ni / i�.

To see more details, we plot Ni
in and Ni

b in Figs. 5 and 6,
respectively. From these figures, we see that at k=0.1 the
number of inner nodal domains drastically decreases below
the f�i� line, while the distribution of the number Nb of

boundary nodal domains tends to accumulate around the f̃�i�
line. These together lead to the reduction of the total number
of nodal domains compared with the separable case at k
=0.0. The k dependence of Ni

in and that of Ni
b are, however,

quite different. As k becomes larger, the number of boundary
nodal domains decreases further and eventually becomes
rather a small fraction of the total number of domains except
at low energy �small i� region. In contrast, the number of
inner nodal domains increases again, and in the chaotic limit
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around k=0.6 almost aligns to the f�i� line as in the case of
the billiard system. Typical nodal structure for a wave func-
tion at k=0.6 is shown in Fig. 7.

Let us further study the behavior of the number of inner
nodal domains Ni

in. We show the histogram of Ni
in / i� in Fig.

8, and the average and the standard deviation of Ni
in / i� in

Table I. The peak position of the histogram suddenly drops
almost to zero as k becomes nonzero, which suggests that the
nonintegrability first acts in such a way to eliminate inner
nodal domains. This behavior is studied in the next subsec-
tion using perturbative argument. The peak of Ni

in / i� then
gradually increases with k, and finally the shape becomes

approximate Gaussian at k=0.6 centered at finite value of
Ni

in / i�, but still is much smaller than the case of k=0.0. Ac-
cordingly, the average of Ni

in / i� increases. The behavior of
the histogram of total nodal domains at finite k in Fig. 3
follows that of the inner nodal domains.

The number of boundary nodal domains Ni
b in Fig. 6 also

shows interesting features. At k=0.0 there are two regular
sequences. The sequence with larger values corresponds to
the wave functions �mn=�m�x��n�y� �m�1, n�1�, while
the sequence with smaller values corresponds to the wave
functions �n1 or �1n. In the latter wave functions nodal do-
mains have a one-dimensional structure, while in the former

FIG. 2. Number of nodal domains Ni vs the
level number i for �a� k=0.0, �b� 0.1, �c� 0.2, �d�
0.3, �e� 0.4, �f� 0.5, and �g� 0.6. Solid lines show
the function f�i�, while the dashed lines the func-

tion f̃�i�. See text for details.
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the boundary nodal domains are systematically aligned along
the boundary. Both sequences are proportional to the square
root of the level number �i. In Fig. 6, we show the function

f̃�i� in Eq. �7� by the dashed line. For small k values, say k
=0.1, the number of boundary nodal domains is distributed

around the f̃�i� line.

C. Reduction of the number of nodal domains
in the perturbative regime

When the dynamics changes from integrable to noninte-
grable, crossing of nodal lines changes to avoided crossing,
which leads to the reduction of the number of nodal domains.
However, this alone is not sufficient to explain the difference

FIG. 3. Histogram of Ni / i� for �a� k=0.0, �b�
0.1, �c� 0.2, �d� 0.3, �e� 0.4, �f� 0.5, and �g� 0.6,
where i� stands for the corrected level number.
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in the reduction at small k value and that at large k value as
seen in Figs. 5 and 6.

Figure 9 shows distributions of Ni, Ni
in, Ni

b, and the histo-
gram of Ni

in / i� at k=0.06. We see that the number of inner
nodal domains is smaller than the case of k=0.1, while the
number of boundary nodal domains remains approximately
the same. This further confirms that the number of inner
nodal domains becomes smaller as the value of k decreases
as long as the value is nonzero. As noted above the avoided
crossing becomes weaker as the value of k decreases. Ac-
cordingly, the smaller mesh size is required to avoid the fic-
titious crossing. Indeed, we used the mesh size
xcl�Ei� /max�3.0i , 200� for the calculation at k=0.06. Proper-
ties of the avoided crossing �avoidance range� have been
studied in Ref. �12�.

When the value of k is small, wave functions may well be
approximated by the first order perturbation theory. The per-
turbed wave function can be written as

�mn� �x,y� = �mn�x,y� + k �
�m�,n����m,n�

Cm�n��m�n��x,y� ,

Cm�n� =
	�m�n�
x

2y2
�mn�

Em�n� − Emn
, �8�

where Emn represents an unperturbed energy. Because of the
second term, the crossing of nodal lines in the unperturbed

wave function �mn will in the generic case turn to an avoided
crossing. Whether the positive domains or the negative ones
are connected and merged into one nodal domain at this
avoided crossing depends on the sign of the second term of
Eq. �8� at the nodal crossing point of �mn. Note that if this
merging occurs randomly independent of the crossing points
as in the percolationlike model, one would not obtain such a
huge reduction of the number of inner nodal domains as seen
in Fig. 9. This suggests that there is a correlation in the sign
of the second term among different nodal crossing points of
�mn. The sign of the second term is mainly governed by the
sign of the sum of a few principal components which have
the largest values of 
Cm�n�
. For instance, we verified that the
probability of the sign of the sum of two principal compo-
nents to be equal to that of the total second term at randomly
chosen points �x ,y� is 0.86 for the present model. Moreover,
the difference between the x quantum number of a principal
component m� and that of the unperturbed wave function m
is generally very small compared with m: 
�m 
 �
m�−m 

	m, as long as m is large. The same argument holds for the
quantum number n in the y direction.

We now evaluate the correlation between signs of a prin-
cipal component with the x quantum number m� at two
neighboring crossing points along the x direction. The dis-
tance d between two neighboring crossing points is the typi-
cal half wavelength 1

2
m for the quartic oscillator wave func-
tion �m. Suppose first that the distance d is shorter than the
half wavelength 1

2
m� of the principal component. Then, two
neighboring crossing points must belong to the same half
wavelength region in order that signs of the principal com-
ponent at these two neighboring crossing points are same.
Thus the probability Ps that the signs of the principal com-
ponents at two neighboring crossing points are the same can
be estimated as

Ps =

m� − 
m


m�
=


�m

m

, �9�

where we used an approximate relation 
m�m−1. When the
distance d is larger than the half wavelength 1

2
m�, the prob-
ability Ps can also approximately be given by Eq. �9�. A
superposition of a few principal components also has a
wavelength close to the unperturbed one 
m, leading to the
same result. The above argument can also be applied to the y
direction.

Equation �9� shows that the probability Ps is much less
than unity. This means that nodal domains in the unperturbed
wave function tend to be connected along the diagonal when
a small perturbation is added, which results in the reduction
of the number of inner nodal domains. Figure 10 shows a
typical nodal pattern at k=0.06. We see that unperturbed
nodal domains, which are slightly deformed from rectangu-
lar, are indeed connected along a diagonal direction. �Com-
pare with Fig. 4�a�, where Ni

in dominates.� This result sup-
ports the above consideration.

For large k values, the perturbation theory becomes no
longer a good approximation, and the above discussion can-
not be applied.

TABLE I. Average and standard deviation of Ni / i� distribution
�total� and those of Ni

in / i� distribution �inner, see the text� for each
k. Levels 1� i�1000 are considered.

Total Inner

k Ave. S.D. Ave. S.D.

0.0 0.37 0.17 0.29 0.17

0.1 0.049 0.035 0.014 0.013

0.2 0.051 0.035 0.022 0.016

0.3 0.055 0.034 0.031 0.018

0.4 0.063 0.032 0.042 0.019

0.5 0.071 0.030 0.052 0.018

0.6 0.079 0.029 0.060 0.017

FIG. 4. Nodal structures of wave functions at k=0.0: �a� An
example of �nn�x ,y� �i=98, Ni

in=169, Ni
b=56� and �b� an example

of �n1�x ,y� �i=103, Ni
in=0 , Ni

b=25�.
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D. Model for the distribution of the number of nodal domains
in the chaotic regime

As a reference to the number of nodal domains, we used
the function f�i�, Eq. �6�, derived for the chaotic billiard
model �5�. As previously noted, in the percolationlike model,
one first considers nodal structure of the rectangular lattice
pattern. In order to determine the size of lattice, the relation
kx

2=ky
2=E was used in Ref. �5�, where kx denotes the wave

number of the x axis. This relation is, however, specific to
billiard models. Thus if a system has a potential as in the

present case, the distribution of the number of nodal domains
may differ from billiard models even in the chaotic regime.
Therefore we would like to present a semiclassical model
which provides a more general expression for the nodal do-
main distribution incorporating some features of a Hamil-
tonian with a local potential.

Let us first summarize the results obtained in Ref. �4� for
separable systems, where the Hamiltonian H is specified by
two action variables I1, I2. According to them, the distribu-
tion function of Ni / i in a region E1�Ei�E2 �which we call
A� in the I1-I2 plane can be written as

FIG. 5. Number of inner nodal domains Ni
in vs

the level number i for �a� k=0.0, �b� 0.1, �c� 0.2,
�d� 0.3, �e� 0.4, �f� 0.5, and �g� 0.6. Solid lines
show the function f�i�.
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P��� =
1

NA


I1,I2�A

dI1dI2��� −
�I1,I2�
N�E�

� , �10�

where N�E� is the semiclassical number of levels

N�E� = dI1dI2�„E − H�I1,I2�… , �11�

up to energy E, NA=N�E2�−N�E1�, the number of levels in
the region A, and �I1 , I2�= I1I2 is the number of
nodal domains of the eigenstate specified by I1, I2.

Assuming that the Hamiltonian is a homogeneous function
of I1 and I2, we transform the variables from I1 and I2 to the
energy E and r, where r represents the length of the path
along the arc � with E=1 measured from the edge on the I2

axis. The action variables are written in terms of the new
variables as �I1 , I2�= (g�E�I1

�0��r� ,g�E�I2
�0��r�), where I1

�0��r�
and I2

�0��r� represent the action on the arc �. When the Hamil-
tonian is a function of the �th order in I1 and I2, g�E�=E1/�.
The Jacobian of the transformation is given by the product
J�E�L�r�,

FIG. 6. Number of boundary nodal domains
Ni

b vs the level number i for �a� k=0.0, �b� 0.1, �c�
0.2, �d� 0.3, �e� 0.4, �f� 0.5, and �g� 0.6. Dashed

lines show the function f̃�i�.
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J�E� = 2g�E�
dg�E�

dE
, �12�

L�r� =
1

2
�dI1

�0��r�
dr

I2
�0��r� −

dI2
�0��r�
dr

I1
�0��r�� . �13�

With these variables, the number of levels N�E� is given by

N�E� = �g�E��2N�1�, N�1� = L�r�dr . �14�

By performing the E integration, one obtains the result of
Ref. �4�:

P��� =
1

N�1��

drL�r���� −
I1

�0��r�I2
�0��r�

N�1�
� . �15�

In order to treat the nonintegrable cases, we modify the
expression �10� so as to include the following features:

�i� Hamiltonian is not simply a function of I1, I2 alone but
depends also on the angle variables.

�ii� Number of nodal domains for a given energy is re-
duced on the average due to nonintegrability.

The first feature implies that each state is not specified by
a point I1, I2 in the phase space, but is distributed over an
area with fixed E when projected on the I1-I2 plane. We may
include this effect by replacing the variable r involved in 
with the smoothed one r��r�;

r��r� � 
0

rmax

f��r,r��r�dr�, �16�

where f��r ,r�� represents a smoothing function with the
width �, and rmax the total length of the arc �. The width �
would correspond to the degree of the amplitude mixing of
the wave function when expanded in the basis of the inte-
grable system. For the integrable system, �=0, and when the
system is chaotic, the wave function will be distributed over
the available phase space, i.e., ��rmax. Feature �ii� may be
included by an introduction of a reduction factor G, i.e.,

�I1,I2� → I1I2G�I1,I2� �17�

with G=1 for separable systems. Thus in our model, the
distribution is given by

P��� =
1

NA


E1

E2

J�E�dE
�

drL�r���� −
I1

�0�
„r��r�…I2

�0�
„r��r�…

N�1�

�G�I1
�0�
„r��r�…g�E�,I2

�0�
„r��r�…g�E��� . �18�

To perform the integration, we have to specify G. In the
chaotic limit, the asymptotic value Gp of G with large I1 and
I2 values may be obtained from the percolation model of Ref.
�5� as

G�I1,I2� → Gp �
3�3 − 5

2
I1,I2 → � . �19�

On the other hand, � becomes large in the chaotic limit. The
function r� will then become independent of r and is repre-
sented by the average, i.e., r̄�rmax/2. By substituting this
into Eq. �18�, we obtain

P��� = ��� − �̄�, �̄ =
I1

�0��r̄�I2
�0��r̄�

N�1�
Gp, �20�

where �̄ corresponds to the average value of Ni / i.
We may adopt a concrete example to obtain the value of

�̄. Let us consider as an unperturbed model Hamiltonian the
following form:

H0 � I1
� + I2

�. �21�

The average is calculated as

�Ni

i
� = �̄ =

2 � �1

2
�2/�

�� 2

�
�

�� 1

�
�2 Gp, �22�

where we used �r̄=rmax/2�

I1
�0��r̄� = I2

�0��r̄� = �1

2
�1/�

, �23�
and

N�1� = 
0

1

�1 − x��1/�dx =
1

�

�� 1

�
���� + 1

�
�

��� + 2

�
� . �24�

Equation �22� can be applied to the Hamiltonian with or
without a potential. For examples, the average for the billiard
model ��=2� is

�Ni

i
� =

3�3 − 5

�
� 0.062, �25�

and that for the quartic oscillator model ��=4/3� is

�Ni

i
� =

�2��3�3 − 5�

6��3

4
�2 � 0.055. �26�

The difference between the average for the billiard model
and that for the quartic oscillator model is quite small, and
cannot be recognized in the log-log plot like Fig. 2. Figure 11

FIG. 7. Nodal structure of the 102nd wave function at k=0.6,
where Ni

in=30 and Ni
b=17.
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compares in detail the result of the numerical calculation and
the above two asymptotic values. In the numerical calcula-
tion we employ the number of inner nodal domains Ni

in in-
stead of Ni in order to remove the boundary effects. The
average by numerical calculation still fluctuates between two
asymptotic values and does not seem to converge. We must
investigate higher levels to see if the actual average con-
verges to the value Eq. �26�.

In the intermediate region of integrable and chaotic cases,
the results for the distribution of nodal domain numbers de-
pends on the concrete form of the weighting function f� and
the reduction factor G. Here, we consider the specific case
where the amplitude mixing is not complete although large,
while the correlation among avoided crossings is lost. To be
more definite, we take the range of � as 1

2rmax���rmax,
and assume that the reduction factor G can be obtained by
the percolation model. In Appendix D, we show that under a
reasonable choice of f� we obtain the result

d

d�
�Ni

i
� � 0. �27�

In order to find which values of k correspond to such a case,
we have to know the relation between k, �, and G, which
remains for a future study. However, the numerical results
shown in Sec. V imply that for k�0.4, the assumption of the
percolationlike model may be applied. Equation �27� sug-
gests that the average value of Ni / i increases as one ap-
proaches the chaotic system, which is in accord with the
results of Table I.

IV. DISTRIBUTION OF THE NUMBER OF NODAL
INTERSECTIONS

We now consider the behavior of the number of boundary
nodal domains, in particular, its dependence on the level
number i, which can be obtained from that of the number of
nodal intersections with the boundary, nb

�i�, according to Eq.
�5�.

For the case of billiard systems, the number of intersec-
tions is proportional to �i, even if the dynamics of the system
is chaotic �4�. On the other hand, in Ref. �13�, the behavior
of the nodal intersections with the boundary of the classically
allowed region was studied for systems with soft potentials
whose dynamics is chaotic. According to Ref. �13�, the num-
ber of intersections per unit length along the boundary is
given by

� = �
grad V
1/3, �28�

where �=0.171 and V represents the potential.
Now we calculate nb

�i� for the present model, Eq. �1�, by
integrating � along the boundary V�x ,y�=Ei. As the potential
is homogeneous, nb

�i� can be written as

nb
�i� = ��

V=Ei

ds
grad V
1/3 = �bEi
1/2, �29�

with the coefficient b given by

b = �
V=1

ds
grad V
1/3, �30�

where the integral is performed along the curve V�x ,y�=1.
By using the semiclassical relation between the energy Ei
and the level number i given in Eq. �14�, we obtain the level
number dependence of the number of intersections:

nb
�i� =

�b

N�1�1/3 i�1/3 � 3.0i�1/3 = 4.8i1/3, �31�

where i� represents the corrected level number and the nu-
merical value b�15.26 evaluated at k=0.6 was used.

We note that nb
�i� has a �i dependence at k=0.0. This in-

dicates that the level number dependence of the number of
intersections changes from i1/2 to i1/3 as the dynamics
changes from integrable to chaotic. Numerical results shown
in Fig. 12 confirm this. Here, the average value of nb

�i� �over
50 levels� is shown as a function of the level number i. At
k=0.0 nb

�i� follows well the semiclassical result for the num-
ber of intersections shown by the higher curve in Fig. 12�a�,
i.e.,

��i� =
8�5/4

5�3�� 3
4�2�� 5

4�
�i� � 2.8�i� = 5.6�i , �32�

a derivation of which is presented in Appendix C 2. As k
increases, nb

�i� gradually decreases. Finally, at k=0.6, nb
�i� fol-

lows the curve 5.6i1/3 shown as the dashed line in Fig. 12�b�,
where the fitted value is used as a coefficient. The fitted
value 5.6 is a little larger than the predicted value 4.8. This
discrepancy may be due to the curvature of the boundary
V�x ,y�=1, which is not taken into account in Eq. �28�.

V. DISTRIBUTION OF THE AREA OF THE NODAL
DOMAINS

Let us now consider the distribution of the area of nodal
domains. The area distribution may provide a measure as to
whether the percolationlike model can be applied.
The appropriate length unit to define the area should
be the wavelength �5� which depends on the energy of the
level. Moreover, in contrast to the billiard problem, the
wavelength in the present model depend locally on the coor-
dinate due to the presence of the potential V�x ,y�. We define
the scaled area s of the nodal domain for the level i with
energy Ei by

s = �
n.d.

�Ei − V�x,y��dxdy , �33�

where the integral is performed over each region of the nodal
domain. We take the scale factor �=1. One may note that the
parameter � is absent in the definition �33� so that it does not
directly influence the properties of the area distribution. The
normalized number of nodal domains with area s is defined
as �5�,
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n�s� � �
i

Qi�s�
i

. �34�

Here, Qi�s� represents the number of nodal domains with
area s in the ith wave function.

Figure 13 shows the distribution of n�s�. The line in the
figure represents the power distribution with the Fisher ex-
ponent, nF�s��s−�, where �=187/91, which we call hereafter
the Fisher line. This represents the characteristic distribution
at the critical point in the two-dimensional percolation
model. The figure shows that the distribution at small values

FIG. 8. Histogram of Ni
in / i� for �a� k=0.0, �b�

0.1, �c� 0.2, �d� 0.3, �e� 0.4, �f� 0.5, and �g� 0.6,
where i� stands for the corrected level number.

NODAL DOMAIN DISTRIBUTION FOR A… PHYSICAL REVIEW E 72, 066214 �2005�

066214-11



of k deviates considerably from the Fisher line, especially in
the small area region. The deviation gradually diminishes as
the value of k increases, and at k=0.6, the distribution almost
coincides with the Fisher line except for a small discrepancy
in the small s region. We now study if the latter discrepancy
may imply that the assumption behind the percolationlike
model does not hold completely even at k=0.6.

We note that the Fisher line was obtained for an infinite
lattice of mesh points, while in our finite system the effect of
boundary may influence considerably the area distributions.
In order to compare with the infinite system and to test the
applicability of the percolation model, we have to exclude
the effect of the boundary. To this end, it is appropriate to
employ only the inner nodal domains to obtain the area dis-
tribution.

Figure 14 shows the area distribution n�s� for inner nodal
domains. A large deviation from the Fisher line at small k

values reflects the fact that the avoided crossings are corre-
lated and the nodal structure does not belong to the univer-
sality class of the percolation model. On the other hand,
when k�0.4, the agreement is very good. Thus we may
conclude that the small deviation seen in Fig. 13 at k�0.4 is
due to the boundary effect.

Remember that the distribution of the number of nodal
domains in Fig. 3 and the number of inner nodal domains in
Fig. 8 still show a gradual change after k=0.4. The area
distribution is contrasted to this behavior. The agreement
with the Fisher line already at k�0.4 may imply that the
independence and the randomness of the avoided crossings is
practically already realized before the system becomes com-

FIG. 9. Number of different kinds of nodal
domains at k=0.06 is shown against the level
number i: �a� Number of total nodal domains Ni,
�b� number of inner nodal domains Ni

in, and �c�
number of boundary nodal domains Ni

b. Histo-
gram of Ni

in / i� is shown in �d�. Solid lines in �a�
and �b� show the function f�i�, while dashed line

in �a� and �c� the function f̃�i�.

FIG. 10. Nodal structure of the 92nd wave function at k=0.06,
where Ni

in=0 and Ni
b=27.

FIG. 11. The average 	Ni
in / i�� for k=0.6. Averaging is per-

formed for bins of i each of which contains 50 levels, and the solid
squares are placed at the center in each bin. The solid line shows the
asymptotic value for the quartic oscillator model and the dashed
line for the billiard model.
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pletely chaotic at k=0.6 as given by the classical phase space
structure or by the level statistics.

VI. SUMMARY

We investigated the transition from integrable to chaotic
dynamics from the point of view of the nodal structure in the
wave functions by employing a two–dimensional quartic os-
cillator. The distribution of the number of nodal domains, the
number of intersections of nodal lines with the boundary of
the classically allowed region, and the area distribution of
nodal domains were studied as a function of the parameter k
which controls the nonintegrability of the system.

The number of nodal domains is drastically reduced as the
dynamics of the system changes from integrable �k=0.0� to
nonintegrable �k nonzero�, and then gradually increases as
the system becomes chaotic �k�0.6�. Separation into “in-
ner” and “boundary” nodal domains shows that the above
dependence on k mainly comes from the behavior of the
former. Perturbative argument suggests that a finite �but
small� k gives rise to correlated avoided crossings of nodal
lines, leading to a drastic reduction of inner nodal domains.
Their number turns to increase again as k becomes larger,
which may be related to the loss of the correlations in
avoided crossings which underlies the percolation model.

The boundary nodal domains show, in contrast, a milder de-
pendence on k, and its significance in the total number of
nodal domains becomes small at large k values. A semiclas-
sical model which incorporates the degree of amplitude mix-
ing as well as properties of avoided crossings has been pro-
posed to study the number of nodal domains.

We studied the distribution of the number of intersections
with the boundary of the classically allowed region. We
found that the average number shows a different dependence
on the level number as the dynamics changes from integrable
to chaotic. It is interesting to find such a characteristic con-
nection to the dynamics in the structure of the wave function
at the boundary, in view of the rather mild k dependence
found in the number of boundary nodal domains.

We studied also the distribution of the nodal domain areas
which shows a scaling behavior in the percolationlike model
�5�. In the present model, too, the area distribution shows a
scaling with the same exponent for large k values. A small
deviation has been shown to come from the boundary effect.
The scaling behavior seems to be complete before the dy-
namics reaches the chaotic limit, however.

This raises the question as to how the various signatures
on the chaotic properties which appear in the level statistics
or in the wave functions are interrelated. Further studies on
the typical values of k which characterize the onset or the
completion of various structures in the wave functions would
be interesting. They include, for instance, the signals studied
in the nodal domain distribution, amplitude mixing �Porter-

FIG. 12. �a� Average of nb
�i� for k=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5

from top to bottom. Averaging is performed as in the previous fig-
ure. Solid and dashed lines correspond to ��i��5.6i1/2 and 5.6i1/3,
respectively. �b� Average of nb

�i� for k=0.6. The dashed line corre-
sponds to 5.6i1/3.

FIG. 13. Distribution n�s� for k=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6 from top to bottom. The values of n�s� are multiplied by a factor
1012 for k=0.0, 1010 for k=0.1, 108 for k=0.2, 106 for k=0.3, 104

for k=0.4, and 102 for k=0.5. Levels 200� i�1000 are considered.
Solid lines show the Fisher line.
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Thomas distribution�, loss of correlations in the avoided
crossings, scaling in the area distribution, etc. These are left
for the future investigation. In this context, it is valuable to
mention that even for the superposition of random waves,
there is a weak long range correlation among the avoided
crossings as discussed in Ref. �14�.
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APPENDIX A: NO NODAL DOMAIN
IN THE CLASSICALLY FORBIDDEN REGION

We prove that there is no nodal domain which is embed-
ded entirely in a classically forbidden region.

Assume that there is such a nodal domain whose region is
D for an eigenfunction � �taken real, for simplicity�. The
eigenfunction � satisfies the following Schrödinger equa-
tion;

�� = 2�V − E�� , �A1�

where E represents the eigenvalue and V the potential. Mul-
tiply � on both sides in Eq. �A1� and integrate them over the

region D. The right hand side becomes positive,

2
D

�V − E��2dv � 0, �A2�

because in the classically forbidden region the inequality V
−E�0 always holds. On the other hand, since the value of
� along the boundary of the region D is zero, the left hand
side after partial integration becomes


D

���dv = − 
D

����2dv � 0, �A3�

which is in contradiction to Eq. �A2�. Therefore there is no
nodal domain in the classically forbidden region.

APPENDIX B: NUMBER OF NODAL DOMAINS
FOR A GIVEN DIAGRAM OF NODAL LINES

We derive the relation �2� for the number of nodal do-
mains in a two-dimensional area enclosed by a boundary B.
See also Ref. �11� for a slightly different form of the relation
for the number of nodal domains expressed in terms of the
number of nodal lines, etc. The nodal lines and the boundary
represent a kind of a diagram in a two-dimensional plane
which is constructed with a number of vertices �nodal cross-
ings including nodal contacts at the boundary� that are con-
nected with edges, i.e., the line segments of nodal lines or
those of the boundary. We first consider a general diagram
made of nodal lines and then restrict it to the special case
treated in the text.

Let us define the degree k��3� of a vertex as the number
of lines which are connected at the vertex. We define also
“island” �in B� as the cluster of nodal lines which are linked
neither to B nor to the other clusters of nodal lines. Simplest
island is a “bubble,” i.e., a closed line without a vertex. For
instance, a bubble within a bubble will make two islands.

We now consider the number N of nodal domains for a
diagram of nodal lines in B with m islands, where the total
number of vertices of degree k��3� is nk. Since there are
m+1 clusters of nodal lines disconnected from each other,
we assign them an index j=0,1 , . . . ,m, where j=0 denotes
the cluster which involves the boundary B, while j
=1, . . . ,m denote islands. For each cluster j we assign the
number of nodal domains Nj, the total number of edges ej,
and that of vertices v j which is given by the sum of nk�j�, the
number of vertices with degree k in the jth cluster. If we
neglect the case of bubbles for a moment, we can use Euler’s
formula for each cluster j to obtain

Nj + 1 = ej − v j + 2 �j = 0,1,2, . . . ,m� , �B1�

where we added unity on the left hand side, since Nj counts
domains only inside the boundary. By using the graphical
relation

ej =
1

2 �
k�3

knk�j� , �B2�

the relation �B1� is transformed to

FIG. 14. Same as Fig. 13 but for the inner nodal domains. The
Fisher line corresponding to k=0.0 is omitted.
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Nj = �
k�3

�1

2
k − 1�nk�j� + 1. �B3�

Equation �B3� is seen to hold also for a bubble, where N
=1 and all nk’s are zero. By summing up over j we obtain the
relation

N = �
j=0

m

Nj = �
k�3

�1

2
k − 1�nk + m + 1, �B4�

where we used nk=� jnk�j�.
In the special case treated in Sec. III, we assumed that

there are no accidental crossing of more than two nodal lines
at a point inside B, and also that no accidental contact of
more than one nodal line on B. In this case, the vertex inside
B has a degree 4, and the vertex on B has a degree 3. Thus
the number of nodal domains N�b ,c ,m� for a diagram with
c�=n4� crossings, b�=n3� points of contact on B, and m is-
lands is given by

N�b,c,m� =
1

2
b + c + m + 1, �B5�

which is the relation �2�.

APPENDIX C: DERIVATION OF SOME RELATIONS

We give brief derivations for Eqs. �7� and �32�. See Sec.
III D for notations.

1. A derivation of Eq. (7)

For the wave function �n1�x ,y� which has corresponding
actions, I1= I, I2=0, the semiclassical number of nodal do-
mains Ni can be written as

Ni = I = g�E� , �C1�

while the semiclassical level number is given by Eq. �14�.
Then, the coefficient d in Eq. �7� is given by

d = 1/�N�1� , �C2�

which leads to Eq. �7� for the quartic oscillator model.

2. A derivation of Eq. (32)

Analogous to Eq. �10�, the distribution function of nb
�i� /�i

can be written as

P��� =
1

NA


I1,I2�A

dI1dI2��� −
��I1,I2�
�N�E�

� , �C3�

where ��I1 , I2�=2�I1+ I2� is the number of nodal intersec-
tions. By the same variable transformation as in Sec. III D
and by performing the integration over the variable E, the
average of � can be written as

	�� =
2

N�1�3/2
�

drL�r��I1
�0��r� + I2

�0��r�� . �C4�

Inserting Eq. �13� and transforming the variable r to
I1

�0��=x�, the integral in Eq. �C4� an be expressed as


0

1

dxx�1 − x��1/� + 
0

1

dx�1 − x��2/�

=

�� 2

�
���� + 1

�
�

���� + 3

�
� +

�� 1

�
���� + 2

�
�

���� + 3

�
� , �C5�

for the Hamiltonian with the form Eq. �21�. Thus for the
quartic oscillator model ��=4/3�, Eq. �C4� gives the coeffi-
cient in Eq. �32�.

APPENDIX D: EXAMPLE FOR THE CALCULATION
OF THE AVERAGE OF NODAL DOMAIN NUMBERS

We here show the increase of average of Ni / i after �
�

1
2rmax by using Eq. �18� with the assumption that the re-

duction factor G can be obtained from the percolation model.
The reduction factor G�I1 , I2� may still have a dependence on
I1 and I2, however, when the energy is not so high.

As for the smoothing function, we adopt the following
form:

f��r,r�� =
��� − 
r − r�
�

min�r + �,rmax� − max�r − �,0�
. �D1�

The average of Ni / i can be written as

�Ni

i
� =

1

NA


E1

E2

J�E�dE
�

drL�r�
I1

�0��r��I2
�0��r��

N�1�

�G„I1
�0��r��g,I2

�0��r��g… , �D2�

where r�=r��r� and g=g�E�. We differentiate Eq. �D2� with
respect to �,

d

d�
�Ni

i
� =

1

NA


E1

E2

J�E�dE
�

drL�r�
r��

N�1�
C�E,r�

�D3�

C�E,r� = �I1
�0���r��I2

�0��r�� + I1
�0��r��I2

�0���r���G

+ I1
�0��r��I2

�0��r��g� �G

�a
I1

�0�� +
�G

�b
I2

�0��� , �D4�

where r�� =dr��r� /d�, I1
�0���r�=dI1

�0��r� /dr, and �G /�a
=�G�a ,b� /�a, etc.

When ��
1
2rmax, the function r�� has a following form:

r�� �r� = �
1
2 �r � rmax − ��
0 �rmax − � � r � ��
− 1

2 �r � �� .

�D5�

Accordingly, the integration range of r in Eq. �D3� is re-
stricted to �0,rmax−�� and �� ,rmax�. By using the relation
G�a ,b�=G�b ,a� and approximate relations I1

�0��r�= I2
�0��rmax

−r� and I1
�0���r�=−I2

�0���rmax−r�, the latter integration range
can be transformed to the former as
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d

d�
�Ni

i
� =

1

NAN�1�E1

E2

J�E�dE
0

rmax−�

drL�r�C�E,r� .

�D6�

The above approximate relations are justified by an approxi-
mate symmetry between the variables I1 and I2, because the
symmetry breaking in the Hamiltonian �1� is small. The be-
havior of the average is thus determined by the function
C�E ,r�. The function C�E ,r� can be written as

C�E,r� = I1
�0��I2

�0���1 +
I1

�0�

I2
�0�

dI2
�0�

dI1
�0��G+ I1

�0�g� �G

�a
+

dI2
�0�

dI1
�0�

�G

�b
�� .

�D7�

Since the range of r� is 1
4rmax�r��

1
2rmax for ��

1
2rmax,

where the boundary effect is negligible, the value of the re-
duction factor G will be close to the asymptotic one. Thus
the derivative of G is near zero;

�

�a
G�a,b� =

�

�b
G�a,b� � 0. �D8�

Accordingly, the second term in Eq. �D7� is neglected. We
also assume the Hamiltonian for integrable case has the form
Eq. �21�. The function C�E ,r� then can be approximately
written as

C�E,r� � I1
�0��I2

�0��1 − � I1
�0�

I2
�0����G . �D9�

Since in the considered range of r�, the relation I1
�0�

� I2
�0� always holds, the derivative of average with respect to

� is positive,

d

d�
�Ni

i
� � 0. �D10�

This result shows that the average of Ni / i increases as the
smoothing width �, as long as ��

1
2rmax. The increase of the

average stops when the condition I1
�0�= I2

�0� always holds,
which means r�= 1

2rmax, namely, the chaotic limit.
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